Microbiota differences between commercial breeders impacts the post-stroke immune response.

TitleMicrobiota differences between commercial breeders impacts the post-stroke immune response.
Publication TypeJournal Article
Year of Publication2017
AuthorsSadler R, Singh V, Benakis C, Garzetti D, Brea D, Stecher B, Anrather J, Liesz A
JournalBrain Behav Immun
Volume66
Pagination23-30
Date Published2017 Nov
ISSN1090-2139
Abstract

Experimental reproducibility between laboratories is a major translational obstacle worldwide, particularly in studies investigating immunomodulatory therapies in relation to brain disease. In recent years increasing attention has been drawn towards the gut microbiota as a key factor in immune cell polarization. Moreover, manipulation of the gut microbiota has been found effective in a diverse range of brain disorders. Within this study we aimed to test the impact of microbiota differences between mice from different sources on the post-stroke neuroinflammatory response. With this rationale, we have investigated the correlation between microbiota differences and the immune response in mice from three commercial breeders with the same genetic background (C57BL/6). While overall bacterial load was comparable, we detected substantial differences in species diversity and microbiota composition on lower taxonomic levels. Specifically, we investigated segmented filamentous bacteria (SFB)-which have been shown to promote T cell polarization-and found that they were absent in mice from one breeder but abundant in others. Our experiments revealed a breeder specific correlation between SFB presence and the ratio of Treg to Th17 cells. Moreover, recolonization of SFB-negative mice with SFB resulted in a T cell shift which mimicked the ratios found in SFB-positive mice. We then investigated the response to a known experimental immunotherapeutic approach, CD28 superagonist (CD28SA), which has been previously shown to expand the Treg population. CD28SA treatment had differing effects between mice from different breeders and was found to be ineffective at inducing Treg expansion in SFB-free mice. These changes directly corresponded to stroke outcome as mice lacking SFB had significantly larger brain infarcts. This study demonstrates the major impact of microbiota differences on T cell polarization in mice during ischemic stroke conditions, and following immunomodulatory therapies.

DOI10.1016/j.bbi.2017.03.011
Alternate JournalBrain Behav. Immun.
PubMed ID28347867
Grant ListR01 NS094507 / NS / NINDS NIH HHS / United States