Ordinal Characterization of Similarity Judgments.

TitleOrdinal Characterization of Similarity Judgments.
Publication TypeJournal Article
Year of Publication2023
AuthorsVictor JD, Aguilar G, Waraich SA
JournalArXiv
Date Published2023 Oct 11
ISSN2331-8422
Abstract

Characterizing judgments of similarity within a perceptual or semantic domain, and making inferences about the underlying structure of this domain from these judgments, has an increasingly important role in cognitive and systems neuroscience. We present a new framework for this purpose that makes very limited assumptions about how perceptual distances are converted into similarity judgments. The approach starts from a dataset of empirical judgments of relative similarities: the fraction of times that a subject chooses one of two comparison stimuli to be more similar to a reference stimulus. These empirical judgments provide Bayesian estimates of underling choice probabilities. From these estimates, we derive three indices that characterize the set of judgments, measuring consistency with a symmetric dis-similarity, consistency with an ultrametric space, and consistency with an additive tree. We illustrate this approach with example psychophysical datasets of dis-similarity judgments in several visual domains and provide code that implements the analyses.

DOI10.1137/120884390
Alternate JournalArXiv
PubMed ID37873008
PubMed Central IDPMC10593068
Grant ListR01 EY007977 / EY / NEI NIH HHS / United States