The present and future of deep learning in radiology.

TitleThe present and future of deep learning in radiology.
Publication TypeJournal Article
Year of Publication2019
AuthorsSaba L, Biswas M, Kuppili V, Godia ECuadrado, Suri HS, Edla DReddy, Omerzu T, Laird JR, Khanna NN, Mavrogeni S, Protogerou A, Sfikakis PP, Viswanathan V, Kitas GD, Nicolaides A, Gupta A, Suri JS
JournalEur J Radiol
Volume114
Pagination14-24
Date Published2019 May
ISSN1872-7727
Abstract

The advent of Deep Learning (DL) is poised to dramatically change the delivery of healthcare in the near future. Not only has DL profoundly affected the healthcare industry it has also influenced global businesses. Within a span of very few years, advances such as self-driving cars, robots performing jobs that are hazardous to human, and chat bots talking with human operators have proved that DL has already made large impact on our lives. The open source nature of DL and decreasing prices of computer hardware will further propel such changes. In healthcare, the potential is immense due to the need to automate the processes and evolve error free paradigms. The sheer quantum of DL publications in healthcare has surpassed other domains growing at a very fast pace, particular in radiology. It is therefore imperative for the radiologists to learn about DL and how it differs from other approaches of Artificial Intelligence (AI). The next generation of radiology will see a significant role of DL and will likely serve as the base for augmented radiology (AR). Better clinical judgement by AR will help in improving the quality of life and help in life saving decisions, while lowering healthcare costs. A comprehensive review of DL as well as its implications upon the healthcare is presented in this review. We had analysed 150 articles of DL in healthcare domain from PubMed, Google Scholar, and IEEE EXPLORE focused in medical imagery only. We have further examined the ethic, moral and legal issues surrounding the use of DL in medical imaging.

DOI10.1016/j.ejrad.2019.02.038
Alternate JournalEur J Radiol
PubMed ID31005165